Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Int J Mol Sci ; 22(15)2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1344938

ABSTRACT

Adaptation of organisms to stressors is coordinated by the hypothalamic-pituitary-adrenal axis (HPA), which involves glucocorticoids (GCs) and glucocorticoid receptors (GRs). Although the effects of GCs are well characterized, their impact on brain adaptation to hypoxia/ischemia is still understudied. The brain is not only the most susceptible to hypoxic injury, but also vulnerable to GC-induced damage, which makes studying the mechanisms of brain hypoxic tolerance and resistance to stress-related elevation of GCs of great importance. Cross-talk between the molecular mechanisms activated in neuronal cells by hypoxia and GCs provides a platform for developing the most effective and safe means for prevention and treatment of hypoxia-induced brain damage, including hypoxic pre- and post-conditioning. Taking into account that hypoxia- and GC-induced reprogramming significantly affects the development of organisms during embryogenesis, studies of the effects of prenatal and neonatal hypoxia on health in later life are of particular interest. This mini review discusses the accumulated data on the dynamics of the HPA activation in injurious and non-injurious hypoxia, the role of the brain GRs in these processes, interaction of GCs and hypoxia-inducible factor HIF-1, as well as cross-talk between GC and hypoxic signaling. It also identifies underdeveloped areas and suggests directions for further prospective studies.


Subject(s)
Disease Resistance , Glucocorticoids/metabolism , Hypothalamo-Hypophyseal System/metabolism , Hypoxia, Brain/metabolism , Ischemic Preconditioning , Pituitary-Adrenal System/metabolism , Signal Transduction , Animals , Humans , Hypothalamo-Hypophyseal System/pathology , Hypoxia, Brain/prevention & control , Pituitary-Adrenal System/pathology
2.
Mech Ageing Dev ; 192: 111363, 2020 12.
Article in English | MEDLINE | ID: covidwho-797286

ABSTRACT

Neprilysin (NEP) is an integral membrane-bound metallopeptidase with a wide spectrum of substrates and physiological functions. It plays an important role in proteolytic processes in the kidney, cardiovascular regulation, immune response, cell proliferation, foetal development etc. It is an important neuropeptidase and amyloid-degrading enzyme which makes NEP a therapeutic target in Alzheimer's disease (AD). Moreover, it plays a preventive role in development of cancer, obesity and type-2 diabetes. Recently a role of NEP in COVID-19 pathogenesis has also been suggested. Despite intensive research into NEP structure and functions in different organisms, changes in its expression and regulation during brain development and ageing, especially in age-related pathologies, is still not fully understood. This prevents development of pharmacological treatments from various diseases in which NEP is implicated although recently a dual-acting drug sacubitril-valsartan (LCZ696) combining a NEP inhibitor and angiotensin receptor blocker has been approved for treatment of heart failure. Also, various natural compounds capable of upregulating NEP expression, including green tea (EGCG), have been proposed as a preventive medicine in prostate cancer and AD. This review summarizes the existing literature and our own research on the expression and activity of NEP in normal brain development, ageing and under pathological conditions.


Subject(s)
Aging/immunology , Alzheimer Disease/immunology , COVID-19/immunology , Diabetes Mellitus, Type 2/immunology , Gene Expression Regulation, Enzymologic/immunology , Gene Expression Regulation, Neoplastic/immunology , Neoplasm Proteins/immunology , Neoplasms/immunology , Neprilysin/immunology , SARS-CoV-2/immunology , Aging/pathology , Alzheimer Disease/pathology , Animals , COVID-19/pathology , Diabetes Mellitus, Type 2/pathology , Humans , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL